Tuesday, January 22, 2008


Here's a repost from one of my favorite websites: www.straightdope.com

On this website, readers can send in intellectually inquiries directed at the smartest man ever to live, a man called Cecil Adams. Although some question whether he is an actual individual or a conglomerate of researchers, his answers are always well researched, well spoken, and memorable. Below is one of my favorites regarding his answer, in verse, regarding Schroedinger's cat. As a little background, the silly little experiment in quantum mechanics was proposed by Erwin Schroedinger in 1935. It attempts to illustrate the theory of superposition, and serves to demonstrate the apparent conflict between what quantum theory tells us is true about the nature and behavior of matter on the microscopic level and what we observe to be true about the nature and behavior of matter on the macroscopic level.

Here's Schrödinger's (theoretical) experiment: We place a living cat into a steel chamber, along with a device containing a vial of hydrocyanic acid. There is, in the chamber, a very small amount of a radioactive substance. If even a single atom of the substance decays during the test period, a relay mechanism will trip a hammer, which will, in turn, break the vial and kill the cat. The observer cannot know whether or not an atom of the substance has decayed, and consequently, cannot know whether the vial has been broken, the hydrocyanic acid released, and the cat killed.

Since we cannot know, the cat is both dead and alive according to quantum law, in a superposition of states. It is only when we break open the box and learn the condition of the cat that the superposition is lost, and the cat becomes one or the other (dead or alive). This situation is sometimes called quantum indeterminacy or the observer's paradox: the observation or measurement itself affects an outcome, so that the outcome as such does not exist unless the measurement is made. (That is, there is no single outcome unless it is observed.)

We know that superposition actually occurs at the subatomic level, because there are observable effects of interference, in which a single particle is demonstrated to be in multiple locations simultaneously. What that fact implies about the nature of reality on the observable level (cats, for example, as opposed to electrons) is one of the stickiest areas of quantum physics. Schrödinger himself is rumored to have said, later in life, that he wished he had never met that cat.

Here's the reader's inquiry, followed by Cecil's poetic explanation.

Dear Cecil:

Cecil, you're my final hope
Of finding out the true Straight Dope
For I have been reading of Schroedinger's cat
But none of my cats are at all like that.
This unusual animal (so it is said)
Is simultaneously live and dead!
What I don't understand is just why he
Can't be one or other, unquestionably.
My future now hangs in between eigenstates.
In one I'm enlightened, the other I ain't.
If you understand, Cecil, then show me the way
And rescue my psyche from quantum decay.
But if this queer thing has perplexed even you,
Then I will and won't see you in Schroedinger's zoo.
--Randy F., Chicago

Dear Randy:

Schroedinger, Erwin! Professor of physics!
Wrote daring equations! Confounded his critics!
(Not bad, eh? Don't worry. This part of the verse
Starts off pretty good, but it gets a lot worse.)
Win saw that the theory that Newton'd invented
By Einstein's discov'ries had been badly dented.
What now? wailed his colleagues. Said Erwin, "Don't panic,
No grease monkey I, but a quantum mechanic.
Consider electrons. Now, these teeny articles
Are sometimes like waves, and then sometimes like particles.
If that's not confusing, the nuclear dance
Of electrons and suchlike is governed by chance!
No sweat, though--my theory permits us to judge
Where some of 'em is and the rest of 'em was."
Not everyone bought this. It threatened to wreck
The comforting linkage of cause and effect.
E'en Einstein had doubts, and so Schroedinger tried
To tell him what quantum mechanics implied.
Said Win to Al, "Brother, suppose we've a cat,
And inside a tube we have put that cat at--
Along with a solitaire deck and some Fritos,
A bottle of Night Train, a couple mosquitoes
(Or something else rhyming) and, oh, if you got 'em,
One vial prussic acid, one decaying ottom
Or atom--whatever--but when it emits,
A trigger device blasts the vial into bits
Which snuffs our poor kitty. The odds of this crime
Are 50 to 50 per hour each time.
The cylinder's sealed. The hour's passed away. Is
Our pussy still purring--or pushing up daisies?
Now, you'd say the cat either lives or it don't
But quantum mechanics is stubborn and won't.
Statistically speaking, the cat (goes the joke),
Is half a cat breathing and half a cat croaked.
To some this may seem a ridiculous split,
But quantum mechanics must answer, "Tough @#&!
We may not know much, but one thing's fo' sho':
There's things in the cosmos that we cannot know.
Shine light on electrons--you'll cause them to swerve.
The act of observing disturbs the observed--
Which ruins your test. But then if there's no testing
To see if a particle's moving or resting
Why try to conjecture? Pure useless endeavor!
We know probability--certainty, never.'
The effect of this notion? I very much fear
'Twill make doubtful all things that were formerly clear.
Till soon the cat doctors will say in reports,
"We've just flipped a coin and we've learned he's a corpse."'
So saith Herr Erwin. Quoth Albert, "You're nuts.
God doesn't play dice with the universe, putz.
I'll prove it!" he said, and the Lord knows he tried--
In vain--until fin'ly he more or less died.
Win spoke at the funeral: "Listen, dear friends,
Sweet Al was my buddy. I must make amends.
Though he doubted my theory, I'll say of this saint:
Ten-to-one he's in heaven--but five bucks says he ain't."


No comments: